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Abstract

Knowledge of suspension rheology can help in the prediction of its behavior under various flow con-
ditions. Considerable theoretical effort has been made to model the macroscopic properties of suspensions
of rigid particles in a Newtonian fluid, but for the most part it has been limited to zero particle Reynolds
number. In this paper we investigate the effect of finite particle Reynolds number on the macroscopic
properties of suspensions of rigid circular particles in a Newtonian fluid in the dilute limit (no interaction
between particles). Two-dimensional numerical simulations are performed. Navier–Stokes equations are
solved for the fluid without neglecting any terms. It is seen that the viscosity of the suspension shear
thickens. The first normal stress difference is negative and increases in magnitude as the Reynolds number
is increased. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Constitutive equations represent the macroscopic behavior of a fluid. The rheology of a sus-
pension depends on factors such as the microstructural mechanics, which includes various forces
acting on the particles as well as their spatial and temporal distributions. Couette flow is an
appropriate flow for such investigations.
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Considerable theoretical effort has been made to model the macroscopic properties of sus-
pensions in Newtonian fluids in terms of their microstructural mechanics. For the most part it has
been limited to low concentrations at zero particle Reynolds number. This approach originated
from the work of Einstein (1906) on the effective viscosity of a dilute suspension of rigid spheres.
Details of this approach can be found in the review articles in this area (Batchelor, 1974, 1976;
Brenner, 1974; Jeffrey and Acrivos, 1976; Russel, 1980; Davis and Acrivos, 1985; Brady and
Bossis, 1988). Kang et al. (1997) studied the rheology of dense bubble suspensions. Ryskin and
Rallison (1980) studied the extensional viscosity of a dilute suspension of spherical particles at
intermediate microscale Reynolds numbers. Rheology of rigid particulate suspensions, in the zero
Reynolds number limit at high concentrations, has been investigated using numerical simulations
(see Foss and Brady, 2000 and references therein). Sangani et al. (1996) studied the effect of finite
Stokes number on suspensions. Lin et al. (1970)) studied the effect of inertia on the rheology of
suspensions of rigid spheres in Newtonian fluids, but their results are valid for low particle
Reynolds numbers (<1) and in the dilute limit. For higher particle Reynolds numbers (>1), no
results are available.
In this paper we investigate the effect of inertia on the macroscopic properties of suspensions in

the dilute limit. Only the hydrodynamic force acts on the particles. We do not consider the
Brownian or interparticle colloidal forces. The investigation has become possible because of our
capability to simulate two-dimensional motions of small and large numbers of particles in
Newtonian fluids at finite Reynolds numbers (Hu, 1996; Hu et al., 2001). We solve the full
Navier–Stokes equations for the fluid and the Newton equations of motion for the particles.
Details of the numerical scheme and convergence results are presented by Hu (1996).
In the literature, the flow problem is often simplified by ignoring the viscous effects completely

(inviscid potential flow) or by ignoring the fluid and particle inertia completely (Stokes flow).
Potential flow simulations (Sangani and Prosperetti, 1993) do resolve some mechanisms but the
wake effect and the other non-linear mechanisms are absent. Brady and co-workers (Brady and
Bossis, 1988; Brady, 1993) have developed a numerical technique for simulating the motion of
large numbers of particles in Stokes flow. They call these the Stokesian Dynamics simulations.
These simulations are appropriate for suspensions with very small particle Reynolds numbers (so
that the fluid inertia may be neglected) and small Stokes numbers (so that the particle inertia may
be neglected). They appear to successfully capture the hydrodynamic interaction between the
particles. Researchers have investigated the case of zero Reynolds number and finite Stokes
number (e.g. Koch, 1990). Marchioro et al. (2000) and Marchioro et al. (2001) have described, for
the first time, a method based on numerical simulations to characterize the ensemble-average
behavior of spatially non-uniform suspensions of spheres at small Reynolds numbers.
Direct numerical simulations, using the full Navier–Stokes equations coupled with Newton’s

equations of motion for the particles, do not neglect inertia. Inertia can become important in flows
in various applications such as sedimentation columns, fluidized beds and lubricated transport of
particulate mixtures through pipes, to name a few. An understanding of the effective properties of
particulate mixtures in such applications can be obtained from the direct numerical simulation
of solid–liquid flows.
In this paper we will first present the problem statement and then discuss expressions to cal-

culate the bulk properties of suspensions. Results on the bulk properties of suspensions in the
dilute limit will then be presented.
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2. Problem statement

Consider an incompressible Newtonian fluid of density q and viscosity g. A rigid circular
particle of radius a and density q is placed at the center of a unit cell with a periodic boundary
condition in the axial direction. The fluid and particle densities are identical. The channel or the
cell width is D and the periodic length is L (Fig. 1). Shearing motion is caused by the relative
velocity between the channel walls.
The governing equations in a non-dimensional form are given by

r � u ¼ 0;

Re
ou

ot

�
þ ðu � rÞu

�
¼ �rp þr2u;

pRe
dU

dt
¼
I

½�p1þ ðruþ ðruÞTÞ	 � ndC;

p
2
Re
dX
dt

¼
I

ðx� XÞ 
 ð½�p1þ ðruþ ðruÞTÞ	 � nÞdC;

ð1Þ

where u is the velocity vector, p is the dynamic pressure, U is the translational velocity of the
particle, X is the angular velocity, 1 is an identity tensor, n is the unit outward normal on the
surface of the particle, X is the coordinate of the center of mass of the particle and x is the co-
ordinate of a point on the surface of the particle. The integral terms represent the momentum
exchange between the fluid and the particle. Appropriate expressions for the mass and the mo-
ment of inertia of the particle in terms of its density and radius have been substituted. No-slip
boundary condition is applied on the particle surface.
In Eq. (1) we non-dimensionalize length by the radius a of the particles, velocities by Va=D,

where V is the relative velocity between the two channel walls, time by D=V , angular velocity by
V =D and pressure by gV =D. We use the effective shear-rate, V =D, as the reference scale.
The parameters governing the problem are

Re ¼ qVa2

Dg
ðReynolds numberÞ;

Fig. 1. Periodic unit cell for two-dimensional simulations.
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/ ¼ Npa2=LD ðsolid area fractionÞ:
Only the dynamic pressure is considered in Eq. (1) because the hydrostatic pressure balances

the body force on the fluid as well as the neutrally buoyant particles. In order to ensure that the
simulation converges to the right solution, we need to apply a boundary condition such that there
is no overall gradient of the dynamic pressure along the axial direction of the periodic channel.
This condition is automatically imposed by the periodic boundary condition.

3. Bulk properties of suspensions

Consider a general two-dimensional flow of a suspension of neutrally buoyant rigid particles
in a Newtonian fluid between two rigid parallel planes in steady relative shearing motion. The
expression to calculate the bulk stress of suspensions, presented in this section, is valid for dilute
as well as non-dilute suspensions. Let the distance between the rigid parallel planes be large as
compared to the particle size. Assuming the wall effects to be negligible and the flow to be ho-
mogeneous, Batchelor (1970) proposed the following expression (presented in a non-dimensional
form) for the bulk stress, R, in a suspension

R ¼ �1
1

A

Z
A�RA0

pdA
� �

þ Aþ 1
A

X
all particles

Z
A0

rdA�Re
A

Z
A

qu0u0 dA

¼ �1
1

A

Z
A�RA0

pdA
� �

þ Aþ Rp; ð2Þ

where the ergodic assumption is made. A is the area of the unit cell over which the averaging is
done, A0 is the area of a single particle in the cell, r is the stress at a point in the suspension, Rp is
the contribution to the bulk stress due to the presence of the particles, u0 ¼ u� u is the velocity
disturbance, u is the average velocity at a point and A is the average strain-rate tensor in the cell.
Only the shear components of A are non-zero.
The stress inside a particle is not defined by any constitutive equation. In order to evaluate the

integral of stress over the particle domain in Eq. (2), we consider the particle phase to be a fluid
subjected to the rigidity constraint. The momentum equation for the particle phase is

q
du

dt
¼ r � r ð3Þ

at each point in the particle domain. The stress inside the particle domain in Eq. (3) can be
considered to be due to the presence of the rigidity constraint (Patankar et al., 2000). This is
similar to the presence of pressure in an incompressible fluid. Using the divergence theorem and
Eq. (3) we get (Batchelor, 1970)Z

A0

rdA ¼
Z

C0

r � nxdC � Re
Z
A0

du

dt
xdA; ð4Þ

where C0 is the particle boundary. This expression should be evaluated for each particle in the unit
cell. By invariance of material response if we assume that the left-hand side of Eq. (4) is inde-
pendent of the choice of the coordinate system, then the right-hand side is also independent; thus
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we may choose for convenience a different origin for each particle if both the terms on the right-
hand side are retained. We choose to select the center of the particle as the origin to calculate the
terms in Eq. (4). For a homogeneous Couette flow Rp is then given by (Patankar, 1997)

Rp ¼ 1
A

X
all particles

Z
C0

r � nxdC � pRe
A

X
all particles

ðU
�

� upÞðU� upÞ þ
1

2
x

�
þ 1
2

�
1 0

0 0

� �	

� Re
A

Z
A�RA0

u0u0 dA; ð5Þ

where up is the undisturbed velocity at the location of the particle center and x is the angular
velocity of the particle. Lin et al. (1970) used similar expressions to evaluate the particle stress for
a three-dimensional case. The bulk stress in a homogeneous suspension between two parallel
plates can be calculated using Eqs. (2) and (5). The area integrals include the layers adjoining the
two rigid boundaries. Batchelor (1970) states that these layers must be excluded from the range of
integration in any space average if it is to be equal to the ensemble average. However, the two layers
are thin, and, provided the distance between the rigid planes is large compared with the particle
dimensions, they make a negligible contribution to the integrals.
The bulk stress of a homogeneous suspension between two parallel plates can also be calculated

by integrating forces on the boundaries of the domain. The expression for the average stress in the
domain is given byZ

A
rdA ¼

Z
C

r � nxdC � Re
Z
A
r � rxdA ¼

Z
C

r � nxdC � Re
Z
A

ou

ot

�
þr � ðuuÞ

�
xdA

¼
Z

C
r � nxdC � Re

Z
A

ou0

ot

 
þr � ð�uuu0Þ þ r � ðu0�uuÞ þ r � ðu0u0Þ

!
xdA; ð6Þ

where C includes the periodic boundary and the walls of the channel and we note that o�uu=otþ
r � ð�uu�uuÞ ¼ 0 at steady state. By applying the divergence theorem we getZ

A
rdA ¼

Z
C

r � nxdC � Re
Z
A

ou0

ot

 !
xdAþ Re

Z
A
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Z
A
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� Re
Z

C
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A

Z
A

rdA
�

� Re
Z
A
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�
¼ 1

A

Z
C

r � nxdC; ð7Þ

where the terms marked by double lines vanish due to the boundary conditions. The terms
marked by a single line vanish with the assumptions that

R L
0
u0ðx; yÞdx ¼ 0 and

R D
0
u0ðx; yÞdy ¼ 0,

where the x- and y-directions are as shown in Fig. (1). The expression for the bulk stress in Eq. (7)
has been used to study the rheology of suspensions in the creeping flow limit (Zhou and
Pozrikidis, 1993). In that case, Eq. (7) follows directly from the divergence theorem since
r � r ¼ 0. The alternate expression in Eq. (7) is subjected to the same assumptions with respect to
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the thin layers adjacent to the walls as those for Eqs. (2) and (5). It is necessary to calculate the
average normal stress on the periodic boundary in order to obtain the first normal (bulk) stress
difference using Eq. (7). This is not straightforward for simulations with large number of particles
where there are particles intersecting the periodic boundary. Therefore, we prefer the equivalent
form in Eqs. (2) and (5) as a general expression to calculate the bulk stress of a dilute or a non-
dilute suspension.

4. Bulk stress in the dilute limit

We assume that there is no interaction between the particles in the dilute limit. Consequently, it
is sufficient to find the flow field around a single particle subjected to a shear flow in an infinite
body of the ambient fluid. By the symmetry of this single particle problem, within the laminar
range, we have U ¼ up (Lin et al., 1970; Patankar et al., 2001). The contribution from the
translational velocity disturbance to the particle stress is equal to zero. Different particles in the
averaging area, A, make a linearly additive contribution to the particle stress in Eq. (5). Thus we
get

Rp ¼ /
p

Z
C0

r � nxdC � /Re
2

x

�
þ 1
2

�
1 0
0 0

� �
� /Re

p

Z
A�A0

u0u0 dA; ð8Þ

where area fraction / ¼ pN=A (in a non-dimensional form). It should be noted that the contri-
bution to the particle stress from the angular velocity deviations (with respect to the value of )0.5)
is retained in Eq. (8). The non-dimensional angular velocity is equal to 0.5 only in the zero
Reynolds number limit. The particle stress in Eq. (8) represents the first-order correction (with
respect to the area fraction) to the bulk stress of a suspension.
Einstein (1906) gave an expression for the particle stress in the dilute limit at zero Reynolds

number for a three-dimensional case. Corresponding expression for a two-dimensional case is
given by (Brady, 1984; Patankar, 1997)

Rp ¼ 2�AA; ð9Þ
where the contribution from the disturbance in velocity to Rp is assumed to be zero. We note that
in these analytical calculations

R
A�A0

u0u0 dA is singular for the zero Reynolds number dilute limit
calculations.
In our numerical investigation, we will compare the numerical values of the particle stress at

finite Reynolds numbers with the value at zero Reynolds number given by Eq. (9). Qualitative
comparison will also be made with the low Reynolds number correction of OðRe3=2Þ to the Ein-
stein viscosity law given by Lin et al. (1970) for dilute suspensions of spheres. They found that the
inertial effects give rise to a normal stress. This will also be qualitatively compared to our two-
dimensional results.

5. Numerical results

Our numerical scheme is described in detail along with the convergence results by Hu (1996)
and Hu et al. (2001). This scheme solves the full non-linear Navier–Stokes equations for the fluid
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in conjunction with the Newton equations of motion for the particles. A periodic mesh generation
scheme (Patankar and Hu, 1996) is used to take care of the periodic nature of the channel.
We perform simulations by placing a particle at the center of a periodic channel. The channel

dimensions are chosen such that the bulk stress in the dilute limit does not depend on its size. The
numerical results will be presented next.

Fig. 2. Comparison of bulk properties for different channel sizes at Re ¼ 0:1136. (a) Plot of Rr
12 as a function of time.

(b) Plot of Rr
11 � Rr

22 as a function of time. (c) Plot of Rt
12 as a function of time. (d) Plot of Rt

11 � Rt
22 as a function of

time. (e) Plot of Rx
11 � Rx

22 as a function of time.
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5.1. Bulk properties in the dilute limit

We study the effect of Reynolds number on the bulk stress in the dilute limit. We calculate the
particle stress by using the following expressions:

Rp ¼ /Rr � /Re
2

Rx � /ReRt;

where

Rr ¼ 1
p

Z
C0

r � nxdC;

Rx ¼ x

�
þ 1
2

�
1 0

0 0

� �
;

Rt ¼ 1
p

Z
A�A0

u0u0 dA:

ð10Þ

All the quantities in Eq. (10) are in a non-dimensional form as defined earlier.

5.2. Selection of the channel size

There is no interaction between the particles in the dilute limit. Hence it is sufficient to perform
single particle simulations in which the effect of the channel size on the bulk properties is small.
We ensure this by selecting the channel dimensions such that any further increase in the size does
not significantly change the values of the bulk properties. This is depicted in Fig. (2) where 1
denotes the x-direction (direction of shear) and 2 denotes the y-direction (direction perpendicular
to shear). All the properties have been presented as functions of the real time. In Fig. (2) we see
that the steady-state values of the bulk properties do not vary significantly as the channel size is
increased from 44a
 44a to 66a
 66a. The solution for the bigger channel lags the solution for
the smaller channel during the transient. This is expected because the simulations are started from
rest by setting the plates in a relative motion at time t ¼ 0þ. The distance d to which the effect of
wall motion propagates after it is set in motion is approximately proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl=qÞt

p
(in a

dimensional form) or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ReÞt

p
(in a non-dimensional form). The kinematic viscosity of the fluid

and the Reynolds number for both the channels sizes are the same in these simulations. The
distance to which the effect of wall motion must propagate to set the entire domain in a shear flow
is greater in a larger channel. Consequently, it takes longer for a larger channel to reach a steady
state.
Independence of the results with respect to the channel size was observed in the simulations for

all non-zero values of Reynolds numbers (lowest being 0.0042). It may be verified through an
approximate analysis that the ‘inner’ viscous region falls within the calculation domain for all the
simulations at non-zero values of Reynolds numbers. This is important because in the zero
Reynolds number limit the velocity disturbance due to a force in two-dimensions behaves like
lnðrÞ, where r is the radial position, and the velocity disturbance due to a force dipole decays like
1=r, so that

R
A�A0

u0u0 dA diverges.
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The results presented for zero Reynolds number are calculated by considering the contribution
to the particle stress from Rr only. Other contributions are taken to be zero. These simulations are
performed by neglecting the inertia terms in the fluid equations of motion. The non-dimensional
angular velocity of the particle was found to be )0.5 for both channel sizes, which is in agreement
with the analytical result. The value of Rp was also found to be in agreement with the analytical
result (Eq. (9)) for both the channel sizes.

5.3. Effect of Reynolds number on Rr

It can be shown that the normal component of the viscous stress on the surface of a rigid body
in a Newtonian fluid is zero (Bird et al., 1987). From Fig. 3(a) we observe that the primary
contribution to the normal stress difference, Rr

11 � Rr
22, comes from the pressure acting on the

Fig. 3. Variation of particle contribution to bulk stress in the dilute limit due to the force acting on the particle surface

as a function of Reynolds number. (a) Normal stress difference as a function of Reynolds number. (b) Shear stress as a

function of Reynolds number.
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surface of the particle. This normal stress difference is negative and increases in magnitude as the
Reynolds number increases (Fig. 3(a)). The shear stress, Rr

12, is seen to increase with the Reynolds
number thus showing shear thickening behavior.
In the limit of zero Reynolds number the only contribution to the particle stress, Rp, comes

from Rr. Fig. 3 shows that our numerical results are in agreement with the analytical result (Eq.
(9)).

R11 � R22 is the first normal stress difference and R22 � R33 the second normal stress difference,
where R is the overall stress and 3 is the z-direction in case of a general three-dimensional
problem. In a two-dimensional case the second normal stress difference is not defined. For most
polymers the first normal stress difference is positive whereas the second normal stress difference is
negative and an order of magnitude smaller than the first normal stress difference (Bird et al.,
1987). In order to maintain a steady shear flow between two parallel plates, a normal force must
be applied to the plates to prevent them from separating when the fluid is polymeric. It should be
noted that the second normal stress difference for suspensions in a three-dimensional case may not
be small (Sangani et al., 1996).

Fig. 4. Variation of dimensional shear stress and pressure with angular position, h, on the surface of the particle.
Pressure is taken to be zero at h ¼ 0. Shear stress is directed in the anti-clockwise sense. (a) Re ¼ 0, (b) Re ¼ 2:273, (c) A
long rectangular particle at the center of a channel in a steady Couette flow between two parallel plates. The dotted line

represents the undisturbed velocity profile whereas the solid line represents the velocity profile in the presence of the

long particle. The shear-rate inside the rectangular particle is zero.
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Suspensions of rigid particles in a Newtonian fluid at finite Reynolds numbers exhibit a normal
stress difference due to the particle contribution to the bulk stress. We observe (Fig. 3(a)) that the
contribution to the first normal stress difference due to the stresslet term ðRrÞ is negative. This
implies that, to maintain a steady shear flow, the plates should be pulled away from the sus-
pension to prevent them from moving towards one another. This behavior is qualitatively different
from that shown by polymers. The physical basis for this behavior may be understood through the
following simplistic argument.
Consider a particle in a Newtonian fluid subjected to a shear flow between two parallel plates

(Fig. 1). Let the channel be large enough for the dilute limit results to be valid. The dilute limit
results are typically seen to be applicable for / < 2% (Batchelor, 1967). Fig. 4(a) shows the
distribution of the shear stress and the pressure on the surface of the particle at zero Reynolds
number. We observe that the distribution of the shear stress has extrema at h ¼ 0; p ð�pÞ; p=2
and �p=2. At zero Reynolds number the magnitudes of these extrema are the same. The pressure
is zero at each of these locations. The average pressure on the plates and on a plane (far from the
particle) perpendicular to the axis of the channel is the same. As a result the first normal stress
difference is zero. At higher Reynolds numbers, the magnitudes of the extrema of the shear stress
at h ¼ p=2 and �p=2 are greater than those at h ¼ 0 and p (Fig. 4(b)). The streamlines are more
crowded at h ¼ p=2 and �p=2. The inertial effects cause the pressure to be lower at h ¼ p=2 and
�p=2 than at h ¼ 0 and p (Fig. 4(b)). This causes lower pressure in the fluid between the particle
and the plates. The average pressure on the plates is less than that on a plane perpendicular to the
channel axis. This results in a net ‘suction force’ on the plates, i.e. a negative first normal stress
difference. This effect becomes stronger as the Reynolds number is increased.
Next, we consider the long particle model of Joseph et al. (2001), also presented by Patankar

et al. (2001), to understand the shear thickening of a dilute suspension. The circular particle of
radius a is replaced by a long rectangle whose short side is 2a (Fig. 4(c)).
Assuming the shear-rate inside the particle to be zero, the magnitude of the shear-rate between

the particle and the plates is given by

du
dy

¼ V =2
D=2� a

: ð11Þ

The long particle cannot rotate but the effect of rotation can be expressed by allowing a shear-rate,
in the long body as if it were a viscous fluid, equal to the angular velocity of the circular particle. A
long particle without shear corresponds to a circular particle for which the rotation is suppressed.
For a long particle with a prescribed shear-rate

du
dy

¼ V =2þ xa
ðD=2� aÞ ¼ _cc 1

"
þ f0:5þ ð0:5þ x= _ccÞgu

1� /

#
; ð12Þ

i.e. in the dilute limit

g ¼ g½1þ f0:5þ ð0:5þ x= _ccÞg/	 ¼ g½1þ f0:5þ xsg/	;

where _cc ¼ V =D is the average shear-rate between the plates, / ¼ 2a=D is the area fraction of the
long particle and gs is the effective viscosity. The channel size is large in the dilute limit. It should
be noted that x is negative for rotations (due to the applied shear) in the clockwise direction. At
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zero Reynolds number xs ¼ 0. Eq. (12) predicts that shear thickening will be observed if xs is
positive and increases as the Reynolds number is increased.
Fig. 5(a) shows the variation of the non-dimensional angular velocity of the circular particle vs.

the Reynolds number. At zero Reynolds number the angular velocity is )0.5; in agreement with
the analytical result. The magnitude of the angular velocity decreases as the Reynolds number is
increased, i.e. xs is positive and increases with the Reynolds number (Fig. 5(a)). The qualitative
prediction of Eq. (12) is therefore in agreement with the observed shear thickening of the dilute
suspension. A smaller angular velocity at higher Reynolds numbers gives rise to a steeper gradient
of velocity between the particle and the plates. This causes shear thickening of the suspension. Lin
et al. (1970) also obtained similar behavior due to the effect of inertia at low Reynolds numbers
(<1).
Ding and Aidun (2000) reported the angular velocities of a cylinder in shear flow at different

Reynolds numbers. They compared their numerical results with the experimental results of Poe
and Acrivos (1975). Fig. 5(b) shows comparison between our results and those of Poe and Acrivos
(1975) on a log–log plot. The agreement is good.
It is interesting to note that Poe and Acrivos (1975) could not perform steady flow experiments

for Reynolds numbers (based on particle radius) higher than 5.75 due to appearance of flow

Fig. 5. (a) Non-dimensionalized angular velocity, x, as a function of Reynolds number. (b) Magnitude of the non-
dimensional angular velocity as a function of Reynolds number. Comparison between present study and the experi-

mental results of Poe and Acrivos (1975) are presented.
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instabilities. In our simulations we encountered convergence problems for Re greater than 5.6
which may also be due to instabilities. This needs further investigation. An alternate cause of our
convergence problem may be linked to the channel size. Our channel size is 44 times the particle
radius, hence the channel Reynolds number is high giving rise to instabilities.

5.3.1. Effect of Reynolds number on Rx and Rt

Fig. 6 shows the effect of Reynolds number on the contribution to the bulk stress due to ve-
locity disturbance. We observe that �ReRt

12 shows a shear thickening behavior at lower Reynolds

Fig. 6. Disturbance contributions to the particle stress. (a) Shear stress component as a function of Reynolds number.

(b) Normal stress differences as a function of Reynolds number.
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numbers and a shear thinning behavior at higher Reynolds numbers. This contribution to the
bulk stress is small in comparison to the stresslet contribution presented earlier. As a result the
overall behavior of the shear stress is shear thickening and will be presented shortly.
Fig. 6(b) shows that the contribution to the first normal stress difference due to the angular

velocity deviation is negligible as compared to the contribution from the velocity disturbance in
the fluid. This normal stress difference is negative and increases in magnitude as the Reynolds
number increases.

Fig. 7. Variation of particle stress as a function of Reynolds number. (a) Variation of shear stress. (b) Variation of the

first normal stress difference.
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5.3.2. Overall trend of the particle stress
Fig. 7 shows the variation of the particle stress as a function of the Reynolds number. We

notice a shear thickening behavior of the shear stress and a negative first normal stress difference.
Lin et al. (1970) studied the effect of inertia on the rheology of suspensions of rigid spheres in a
Newtonian fluid. They used perturbation techniques to obtain the flow field in the vicinity of a
single particle in a Newtonian fluid subjected to a shear flow. Their results are applicable in the
dilute limit at low Reynolds numbers (<1) and are shown in Fig. 7 up to Re ¼ 1. They observed a
shear thickening behavior and a negative first normal stress difference as well. Our results for a
two-dimensional case are valid at finite Reynolds numbers without being restricted to values less
than one. An extension of our approach to a three-dimensional case is in progress and can provide
valuable information about three-dimensional suspension rheology at higher values of Reynolds
numbers.
Similar trends were observed for non-dilute suspensions from preliminary simulations at higher

concentrations reported by Patankar (1997).

6. Conclusions

In this paper we have studied the effect of Reynolds number on the macroscopic properties of a
suspension of rigid cylinders in a Newtonian fluid using numerical simulations. This investigation
was carried out in the dilute limit.
It was seen that the effective viscosity of the suspension shear thickens, i.e. the effective viscosity

increases as the Reynolds number is increased. This is because the non-dimensionalized angular
velocity of the particle decreases as the Reynolds number is increased. This causes steeper gra-
dients of velocity between the walls of the channel and the particle thus giving rise to higher shear
stress at the channel walls. Dilute limit investigation also showed that finite Reynolds number
causes negative first normal stress difference. This implies that to maintain a steady shear flow of a
suspension of rigid particles in a Newtonian fluid between two parallel plates, the plates should be
pulled away from the suspension to prevent them from moving towards one another. This was
explained by the presence of lower pressure between the channel walls and the particles due to
inertial effects. Low pressure induces suction on the plates on the channel, thus pulling them
towards one another.
Suitable experimental data are not available to directly compare the predictions of our simu-

lations and should become a part of further investigation. Our investigation is based on two-
dimensional simulations. There can be some qualitative differences between these predictions and
the three-dimensional case. The methodology introduced here can easily be extended to three
dimensions and is the focus of our future investigation.
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